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SUMMARY 

This is the first of two articles intended to develop, apply and verify a new method for averaging the 
momentum and mass transport equations for turbulence. The new method is based on Gaussian filtering in 
both the spatial and temporal domains. Application is made to the problem of momentum and scalar 
transport in a one-dimensional transient Burgers’ flow field. No actual calculations, with the averaged 
equations, are presented in this paper. However, an ‘exact’ solution of the one-dimensional flow situation is 
presented as an economical tool for verifying the performance of the different turbulence models. In the 
second paper calculations are performed with the averaged one-dimensional equations on coarse grids, and 
the results are compared to the exact or fully simulated data with a statistical verification procedure. 

KIY  WORDS Turbulence Modelling Large Eddy Simulation Filtering One-dimensional Scalar Transport 
Burgers’ Flow 

INTRODUCTION 

Whenever a system of equations describing turbulent fluctuations is to be solved numerically, on 
relatively coarse grids, the equations must be ‘prepared’ commensurate with the grid spacings. 
Because any numerical grid is capable of resolving only a certain portion of a rapidly fluctuating 
variable, a large-scale component and the remaining portion, called the subgrid-scale (SGS) 
component, are defined. Although not calculable, the SGSs have an important impact on the 
calculated large-scale components since they are responsible for receiving, scattering and 
dissipating the energy contained in the large-scale motion. The term ‘preparing’ the equations 
(turbulence modelling) then means replacing the total variables by their large-scale equivalents 
(averaging), and modelling the SGS effects in terms of the large-scale components (closure). After 
turbulence modelling, the equations can be solved on relatively coarse grids, since the large-scale 
variables vary less rapidly than the total variables. 

Very recently attention has been directed towards improved methods for averaging the basic 
equations in order to achieve an improved representation of both the mean flow and SGS terms. 
Following the work of Leonard’ new higher order spatial averaging procedures have been used 
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with considerable success in formulating and solving turbulent flow problems. The critical basis of 
the procedure is that spatial averaging is all that is required for proper formulation. Many flows of 
environmental o r  meteorological interest are modelled under conditions which call into question 
whether spatial filtering or  averaging is sufficient. It is therefore the objective of this paper to 
formulate a higher order space-time filter and test the results by intercomparison with models 
using the other available averaging methods and the results of a full one-dimensional ‘turbulence’ 
simulation. 

RATIONALE 

There are several reasons for examining space-time filtering, not the least of which is the authors’ 
desire to model environmental flows. Such flows are dominated by: ( 1 )  very large horizontal and 
compressed vertical scales, (2) dynamic activity with time variation in the mean flows and perhaps 
non-stationarity in the turbulence characteristics and (3) the effects of interacting non-linear waves. 
Therefore i t  is anticipated that for the following reasons spatial filtering alone might not be fully 
adequate for use in numerical fluid dynamics models. 

First, it is noted that based upon the initial suggestions of Reynolds’ only time filtering is 
employed in most equation preparation. More recently in computational fluid dynamics has been 
the development and use of spatial filters. As reviewed i n  the next section, these filters d o  not 
employ any temporal filtering and rely on the elimination of temporal information through the 
elimination of the spatial components. The large eddy simulation method reviewed in the following 
section represents the most highly evolved form of spatial filtering. A thorough review of the 
average definition is presented by Monin and Yaglom3 (Chapters 2 and 3), whereby the general 
space-time averaging definition is suggested (equation (3.l), p. 206). As to the use of this full 
averaging, Monin and Yaglom further go on to say that there are analysis complexities which are 
better approached by probabilistic methods. The analysis complexities are not clear, but appcar to 
include an inability to arrive at  solutions to such averaged equations, a problem avoided by 
computer solution methods. From our review of the literature no  discussion as to the adequacy of 
space for time averaging or  space and time averaging has occurred. Therefore the space-time 
averaging procedure is offered in this paper as a means of exploring the question of its necessity. 

A second reason for developing this new averaging is to ensure complete space-time consistency 
in the dynamic model equations and their results. To heavily average in space and not to d o  so in 
time, because space averaging takes care of the temporal activity, seems inconsistent, i.e. it assumes 
and demands a full relationship between the space and time behaviours of the resolved processes 
for the dejircto spatial averaging oftemporal activity to  be valid. Ifsuch were the case then it should 
be possible always to replace the three-dimensional space average with its equivalent temporal 
filter and achieve the same averaging result. To exactly substitute time for space filtering appears to 
be only possible when dealing with linear conservative waves where a clear linear relationship 
between space and time exists through the wave equation. In the presence of spatially and 
temporally variable dispersion, diffusion o r  turbulence the relationship between space and time 
would vary considerably from point to point in time and space in the flow field and therefore non- 
linear behaviour would be obtained. The non-linear relationship between space and time would 
then require both time and space filtering to  ensure that the desired averaging occurred. 

Additionally space for time filtering cannot be the case at  all when, for example, there are 
source/sink terms. Source/sink terms, such as are heavily used in pollutant transport models, o r  the 
more general case of very stiff time-varying source/sink terms, can have very cyclical o r  oscillatory 
behaviours at  a fixed point or  volume in space. Since for many such source/sink terms there is n o  
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space dependence at all, then a spatial filter would not provide consistent averaging of these point 
oscillations. 

A third theoretical or conceptual motivation is exemplified by the necessity of using very small 
time steps coupled with very large spatial scales. This represents an extreme case of the 
inconsistency mentioned above, and it is this very point that resulted in the investigation of space- 
time filtering. There must be consistency between the space-time averaging used in the equations 
and the physics to be resolved in the model. That same consistency must also exist between the 
averaged model equations and resulting numerical grid and discretizations. As is most often the 
case with surface water models, the spatial filter scales, as dictated by the grid size, place a definite 
resolution limit on the time scale of the resolved spatial phenomena. For example, if the average 
resolved scale spatial grid length is I, then a typical time scale of that resolution can be found if an 
appropriate velocity, say U,  can be found. Under these conditions the typical time grid scale is 
7 = l / U .  The following problem now occurs if spatial filtering is left to perform temporal filtering as 
well. Because of stability restrictions, the time step 6, actually allowed in the model is usually much 
less than ‘L, the time period of the activity permitted by the spatial grid. Therefore, the time 
marching scheme is resolving and the spatial grid is propagating activity with a very high frequency 
time characteristic and a very low spatial wave number resolution. Because the Navier-Stokes 
equations produce turbulence and because of the very small time step a portion of the turbulence 
frequency spectrum between 2n/7 and 2n/6, is being created which has not been filtered by the 
spatial grid. Hence a failure of the spatial filter to properly filter in time. The first step towards 
resolving this problem was, we felt, to learn how to time and space filter in order to remove this 
unwarranted frequency spectrum resolution and prohibit aliasing of these high frequency data into 
the long wavelengths. 

Finally, and without much elaboration, it is noted that Pielke,4 in his text on meteorological 
mesoscale models recommends space-time averaging as the basis for model equation 
preparation-but no analysis or discussion occurs in the work. 

The rest of this paper and the second paper therefore present the higher order space-time filter 
and its evaluation. For the sake ofinitial or exploratory validation of the concept it  is applied to the 
one-dimensional momentum and passive scalar transport problem. The authors fully realize that 
the one-dimensional problem may not possess the physics of the full 3D problem, but, as so many 
others have done before, we use the simplified application to allow a cost-effective first test of the 
procedure. 

THE GENERAL AVERAGING DEFINITION 

The mathematical definition of the large-scale component, A(x, t) ,  varies from one method of 
averaging to another; however, all methods imply smoothing. In other words, A(x, t )  must be 
obtained from A(x, t )  by removing the high wave number and high frequency components. High 
wave numbers and high frequencies are those larger than the corresponding Nyquist values of the 
grid. From Reference 3 a general definition of A(x, t )  covering all possible methods of averaging can 
be written as 

This is a convolution integral in which G(x, t )  is a weight, averaging or filter function defined as 
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where Gl(xl) is the component of G(x, t )  in the x1 direction, G,(t) is the temporal component, x is the 
spatial position vector, t is time and n is the total number of spatial directions. The function G(x, t )  
must satisfy the condition 

G(x - x’, t - t’)dx’dt = 1, Km (3) 

so that the large-scale component of a constant becomes the same constant. 
If A(x, t )  is really the large-scale component (the component that can be resolved by a given 

coarse grid), its Fourier transform should vanish at wavelengths and wave periods equal to or 
smaller than twice the corresponding grid spacings. This can be easily examined by applying the 
convolution theorem, which states that if (1) is true then 

F {  4% t )  > = F{ (3x9 t )  } F{ 4x9 t )  >, (4) 
where F denotes the Fourier transform. Equation (4) shows that the Fourier transform of A(x, t )  is 
directly proportional to the Fourier transform of the filter function. Therefore, a filter function 
whose Fourier transform is zero for wavelengths and periods equal to or smaller than twice the 
corresponding grid spacings is needed. 

Using (2) ,  equation (4) can be rewritten as 

F{ (7% t )  } 
which is represented by 

where R is a general function, f is frequency and w1 is wave number in the xl direction ( I  = 1 , .  . . , n). 
A successful averaging operation should therefore possess the following properties: 

( 7 4  

R1(ol)  = F { G , ( x l ) }  = 0 (for o, 3 1/26,), (7b) 

Q ( f ,  = F{ G,(t)} = 0 (for f 3 1/26,), 

where 6, is the temporal grid spacing and 6, is the spatial grid spacing in the x1 direction. 
There have been three filter functions used in preparing numerical models. The first three 

columns of Table I summarize the details of the various filters. In each column the filter function is 
defined and the Fourier transform behaviour specified and plotted. The first and most widely used 
form is Reynolds’ averaging, a uniform temporal filter with incomplete high frequency removal. 
Rodis and Brodkey’ give the modelling and physics aspects of this filter. It is noted that condition 
(7a) is only partially satisfied and (7b) is not satisfied. Column 2 of Table I contains the morc 
currently used uniform spatial averaging filter. Recognizing the necessity of removing the eddies 
smaller in size than the spatial grid, the original use of this filter was in complex meteorological 
models by Smagorinsky,’ Deardorff 8-’1 and Lilly.” Bedford and Rail3 used this procedure in a 
shallow lake circulation and transport model. Again it is noted that high wave number information 
is not totally removed by this filter. 

The first use of non-uniform weight functions was by Leonard‘ who used a Gaussian spatial 
filter (column 3 ofTable I )  and thereby initiated the large eddy simulation method. Extensive use of 
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Table I. Averaging operator definitions 
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Reynold i  Temporal Averag ing  
I882 t o  Present  

- A  d 
G ( t )  = 1 for  2 s t s 2 t d 1 2  2 

= 0 Otherwise  

U n i f o r m  S p a t i a l  Averag ing  
1950  t o  Present  

L e o n a r d ' s  S p d t i d l  r i l t e r i n g  
1974 t o  Present  

S T F  
ruggerred by the Author5  

A, = temporal averaging scale 
Al = spatial averaging scale in the x I  direction 

y = dimensionless constant with optimum value of 6 
f = frequency 

w1 = wave number in the x, direction 

this filter is presented in References 14-1 8. For a review of the LES method especially with regard 
to flows of industrial or commercial application the reader is referred to the review paper by 
Rogallo and Moin.' Babajimopoulos and Bedford," Bedford and Babajimopoulos' and 
BedfordZ2 have used this method in lake and coastal transport calculations. In this spatial filter the 
high wave number components are successfully eliminated from A(x, t). The cut-off wave number, 
ole, is obviously a function of the filter width Al and the non-dimensional constant y. I t  is therefore 
the primary function of Al and y to bring olC as close as possible to 1/26, (cycle per unit of length) in 
order to satisfy the requirement (7b). The constant y is usually set equal to 6, and A, is usually an 
integer multiple of 6,. Note that no averaging is done in the temporal domain. In other words, the 
requirement (7a) is not satisfied, which means that F {  A(x, t )  } has non-zero values at all frequencies. 
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THE NEW STF METHOD O F  AVERAGING 

An important physical attribute of turbulence is the fact that turbulent quantities fluctuate rapidly 
in both space and time. Thus, simultaneous filtering in time and space is appropriate. The general 
operation (1) is suggested as the basic definition of the large-scale. The filter function defined in (2) 
has n Gaussian spatial components as will be defined in (9), and a similarly defined temporal 
component. In this new space time filter (STF), equations (l), (2), (4), (5), (6), (7a) and (7b) become, 
respectively 

Qz(w1,. . ., on, f) = Q,(f) n Q I ( 4  Q,(w,, . . ., an, f ) ,  (12) 

Q , ( f ) = F ( G , ( t ) }  =exp(-fZA:/4y)-0 (for f > f c ) ,  (13) 

Ql(ol) = F {  Gl(xl)} = exp( - w:A:/4y) N 0 (for of > qC). (14) 

Equations (8)-(14) and the Figures in Table I show that A(x, t )  is free of any components having 
wave numbers and frequencies greater than or equal to q C ( l  = 1,. . . , n) and fc. The cut-off values 
olc and ,fc can be brought to 1/28, and 1/28, so as to satisfy both the requirements (7a) and (7b). 

The filter function (9) clearly satisfies the condition (3). Using the averaging operation (X), with 
the filter (9), the STF scheme for dealing with the averaging of a non-linear term, i.e. z, is as 
follows: 

) 

t )  = G(x - x’, t - t’)AB(x’, t’)dx’dt’. 
__ Sr, 

Expressing AB(x’, t’) in terms of D ( x ,  t )  through a Taylor series expansion and neglecting higher 
order terms gives, after some algebra 

m 

= ABJ G(x - x’, t - t’)dx’dt’ 
- m  

+ m  

+ (dAB/dt)/ (t’ - t)G(x - x’, t - t’)dx’dt’ 
- m  

P m  

+ 2 (dAB/dxl)J (xi - xl)G(x - x’, t - t’)dx’dt’ 
I =  1 - O D  

m 

+ 0.5(d’AB/dtz)[ (t’ - t)’G(x - x’, t - t’)dx’dt’ 
- m  
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+ 0.5 t (a2AB/axt) (x; - x1)2G(x - x', t - t')dx'dt'. (16) 
I =  1 Km 

The components of ax, t) are defined in equation (9). Note that each of these components is a 
Gaussian probability distribution with a zero mean; a variance equal to A:/2y or A:/~.J and a unit 
area under the curve. Therefore, the above equation reduces to 

= AB + (A:/4y)a2AB/dt2 + f (A:/4y)Z2AB/dx:. (17) 
1 = 1  

Thus, a typical non-linear quantity is averaged as follows: 
~ 

AB = ( A  + A')@+ B )  
~~~~ 

= A B + A B  +A'B+A'B 

closure 

Notice the existence of the new temporal filter term in addition to the n spatial terms due to 
Leonard.' The cross terms AB' and A'B'are either neglected, according to the Reynolds rules, or 
modelled as by Clark et ~ 1 . ' ~  Clark suggests a model for and A'B which when combined with 
Leonard's filter terms reduces them to first order partial derivatives. The extension of this method 
to the STF procedure is below. 

STF SIMPLIFICATION BY CLARK'S REDUCTIONS 

The Clark rt oI." reduction scheme can be easily extended to cover the newly suggested STF 
method. By induction from (17), the result of applying (8) to B is 

B = B + (A:/4y)d2B/dt2 + 2 (A:/4y)d2B/dx: 
I =  1 

Since B is also equal to B -  B', then 

n 

B' = - (A:/4;l)a2B/at2 - C (Af/4y)d2B/ax:. 
1 = 1  

Multiplying by A, expanding B into B +  B', and then averaging the above equation yields 

According to Clark et B' is small by an order of magnitude than B, and since B' fluctuates 
rapidly within the averaging scales and has a mean value ofapproximately zero, the second and last 
terms at the right can be neglected. The lowest order approximations of Ad2B/dt2 and A?'B/d.xf 
are just A d 2 B / d t 2  and Ad2B/dx:. Thus equation (21) reduces to 

= - (A:/4y)A(d2B/dt2) - t (A:/4y)A(d2B/ax:). (22) 
f = 1  
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Similarly 

A’B = - (A:/4y)B(d2A/dt2) - f (A:/4y)B(d2A/ax:). (23) 
I =  1 

Using (18), (22) and (23) a typical non-linear quantity is averaged as follows: 
- ~ ~ ~ _ _ _  
A B =  ( A +  A’)@+ B’) = AB + AB’ + A’B + A’B’ 

- (A:/4y)A(~?~B/at)~ - (A:/4y)A(d2B/dx:) 
I =  1 

All filter terms, including the new temporal component, are reduced to first order partial 
derivatives. The quantity A’B‘ is to be modelled in terms of the large scales by a closure scheme. 

__ 

ONE-DIMENSIONAL APPLICATION 

For testing purposes the three-dimensional NavierStokes and scalar transport equations are 
extremely inefficient and expensive. Therefore many researchers resort to one-dimensional 
momentum and scalar transport equations to investigate certain problems in turbulence 
modelling.  burger^^^.^^ was the first to suggest a one-dimensional momentum equation as a model 
equation for real turbulence. Burgers used the equation in an attempt to investigate the role of the 
viscous and non-linear terms in the Navier-Stokes equation. Burgers’ equation was later 
extensively used to examine the different characteristics of turbulence and to test the different 
averaging and closure models. Typical of these studies are References 25-35. The one-dimensional 
momentum and scalar transport equations are described as follows. 

From the above papers the form of the unaveraged momentum equation is 

aulat + a(uau/ax) = v(a2u/ax2). (25) 

When a = 1.0 then the non-linear term is written as (1/2)d(u2)/dx. In this equation u is the velocity 
and v is the kinematic viscosity. 

For the contaminant transport equation a somewhat non-standard form is selected, i.e. for 
scalar c, 

(26) 

where /i’ = 1.0 and the source/sink term s is specified as caulax. In so doing turbulent flux can be 
maintained continually throughout the calculation by the source/sink term while also permitting 
an effective test of the filter. 

If the values of u and c are given for all x at t = 0, the above equations can be solved for the 
behaviour of u and c as functions of x and t for t > 0. A t  first glance, the equations are seen to retain 
the inertial (advective) and dissipative (diffusive) natures of the corresponding three-dimensional 
equations. Further, Burgers’ equation describes the formation and decay of weak shock waves in 
compressible fluids. Thus, equations (25) and (26) are important in their own right, as well as being 

ac/at + p(uac/ax) = a(a2c/ax2) + s, 
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Table 11. The average Burgers’ equation 

Unaveraged (Al) 

Reynolds averaging (A2) 

Uniform spatial 
averaging 

Leonard’s averaging 

Leonard’s averaging and 
Clark’s reduction (A3) 

STF 

STF with Clark’s 
reduction (A4-A6) 

au 1 a 
- + -- [uu] 
at 2 a x  
au 1 a 
- + -- [UU] 
at 2 a x  

a U  1 a 
~ + -- [UU] 
at 2ax 

d 2 U  

2x2 
=v- 

Table 111. Averaged one-dimensional scalar transport equation 

pc 

ac ax a x  

- + - [tic] 

- ac a 

ac a 
at ax 

Uniform spatial ac a 
~ + - [UC] 

Averaging at ax 
ac A: a2uc -+- U C + - 7  
at 2; [ 4? ax ] 

Unaveraged (Al) -+- [uc]  -a: 

Reynolds averaging (A2) 

Leonard’s averaging 

Leonard’s averaging 
with Clark’s 
reduction (A3) 

STF 
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one-dimensional tools for testing approximations designed for Navier-Stokes turbulence models. 
To solve equations (25) and (26) on coarse grids, the total variables u and c must be replaced by 

their large-scale components U and C. This is achieved by letting u = U + u’ and c = C + c’ in the non- 
linear terms and then averaging to yield 

(27) 

(28) 

Using the various averaging methods, the final forms of the averaged equations are given in Tables 
I 1  and Ill. The terms between braces are to be modelled in terms of the large-scale variables 
through a suitable closure procedure. 

After closure, the averaged equations in Tables I1 and I11 can be solved on coarser grids. The 
chosen values for v and c( determine the level of turbulence. For the resulting U and C fields, time 
histories of the spatial mean, variance, skewness and kurtosis can be calculated and plotted. Also, 
wave number spectra at fixed instants in time, and frequency spectra at fixed locations are easily 
obtainable for both ti and C distributions. These statistical properties can be compared to the 
corresponding properties of an ‘exact’ u and c field which can be obtained by solving the original 
equations on a very dense grid. 

-~ 

aiilat + (1/2)a[Z + 2 u ~ ’  + u’ui]/ax = va2ii/ax2, 
aC/at + a[uc + uC‘ + U’C + u’c’]/ax = ma2c/ax2. 

- - - -  

AN EXACT SOLUTION FOR A DYNAMIC BURGERS’ FLOW FIELD 

Equations (25) and (26) are one-dimensional. Thus, a full simulation of all the scales of motion, on 
very dense grids, is economically feasible. The resulting ‘exact’ features provide a basis against 
which the results of solving the averaged equations, on coarse grids, can be verified. A sample exact 
solution is presented in Figures 1-5. The initial u ( x ,  0) is a train of sine waves, and the initial c(x, 0) 
is uniform over the spatial domain. The boundary conditions are periodic, and the viscosity, v, is 
very small (high Reynolds number). The diffusivity, a, is equal to v (unit Schmidt number). The 
spatial domain is divided into 4000 intervals and the total time of simulation is divided into 2000 
time steps. The finite difference scheme employs the fourth order accurate discretization used by 
Kwak et ~ 1 . ’ ~  for the non-linear terms. The viscosity and diffusivity terms are discretized by the 
usual centred second order schemes. For time marching, the explicit Adams-Bashforth procedure 
is implemented. 

The most important behavioural aspect of the solution u(x, t )  is that, owing to the non-linear 
terms, the absolute value of(du/ax) grows larger with time in regions where it was initially negative. 
On the other hand, in regions of initially positive (au/2x), the values of this gradient becomes 
smaller with time. This means gradual development of shock fronts connected by regions of mildly 
sloping velocity. Also, the magnitude of the velocity, u(x, t ) ,  gradually decays with time as a result of 
the dissipative term. Figure 1 demonstrates this behaviour. It is also known that Burgers’ equation 
is capable of propagating the shocks through the spatial flow domain with a speed equal to the 
spatial mean of u(x, t )  which remains constant with time. Thus point B in Figure 1 feels the shocks 
passing through it from left to right. Therefore, a time history of velocity at point B (Figure 3 )  shows 
the shocks developing in time, as well as the gradual decay due to viscous dissipation. 

Figure 2 shows the concentration field as advected by the velocity of Figure 1 .  A time history of 
concentration at point B is also given in Figure 3. The most important aspect of the solution, c(x, t), 
is that the pollutant accumulates in regions of low velocity and diminishes in regions of high 
velocity. This results in the existence of regions and periods in which the slopes &/ax and i%/iit are 
very steep. Figure 4 shows wave number and frequency spectra for both velocity and 
concentration. Note the very apparent feature of - 2 slope in the inertial subrange of all the full log 
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Figure 3. Time histories of u and c at point B 

spectral plots. This feature is due to the existence of shocks in both the spatial and temporal 
distributions of u and c. 

Another important aspect of the Burgers' flow is the temporal behaviour of the total energy 
contained in the flow field. Since the spatial mean of u(x, t )  remains constant with time, only the 
energy associated with the deviations from the mean is of interest. This total energy, per unit mass, 
is measured by ( v 2 / 2 )  where u is the velocity u minus its spatial mean, and () denotes averaging 
over all nodes. An 'energy equation' describing the temporal variation of ( v 2 / 2 )  can be derived 
from (25 )  in the following form:36 

a(U2/2)at = - (1 /2) (~aU~/ax)  + v ( v a 2 v / a x 2 ) .  (29) 

Time histories of each term in (29) are plotted in Figure 5. Note that the inertial term is energy 
conservative and that the energy decay is due solely to the viscous dissipation which reaches a peak 
when the shocks are fully developed. 

The importance of the energy equation (29) is the insight gained into the process of energy 
change and dissipation. If the Burgers' equation is to be averaged and closed, the appearance of the 
filter and eddy viscosity terms is expected. The STF averaged equation, with Clark's reduction, is 
used to derive an energy equation for the temporal variation of the total energy ( U 2 / 2 )  associated 
with the large-scale motion. As in Reference 36, the equation reads 

a ( ,712 ) / a t  = - (1/2)( vav2/ax) - (A:/+) ( va(av/zt)2/ax) - (A:/+) ( va(av/ax)2/ax) 

+ v ( va2v/ax2 ) - (112) ( va{u")/ax). (30) 

A n  energy analysis in the fashion of Figure 5 is useful in studying the role ofeach of the new terms in 
the production, transfer and dissipation of energy. 

The existence of the shocks or steep slopes in the u and c distributions is what makes equations 
(25) and (26) 'model equations for turbulence'. These shocks vary rapidly with space and time and, 
thus, a very dense grid must be used for the numerical solution, or a coarse grid turbulence 
modelling scheme must be implemented. The existence of the shocks in both the spatial and 
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Figure 5. An exact solution of equation (29) 

temporal domains is of special importance to this research since a new averaging procedure based 
upon both space and time filtering is suggested for such coarse grid modelling. The exact solution 
constitutes a valid test of the new procedure. The companion paper (Part 11) presents this test. 

CONCLUSIONS 

In this paper a review of the spatial and temporal averaging procedures used in the formulation of 
numerical models is presented. Based upon deficiencies in the processing of high frequency and 
wave number information, a new spatial and temporal filter is presented. For this filter the rules of 
averaging as presented by Leonard' are shown to be applicable, as is Clark's reduction. To test the 
filter and its hypothesized improvements a dynamic Burgers' equation and transport problem is 
identified and solved with a mesh dense enough to constitute an exact solution. In addition to the 
time and space development of shocks in the solution an energetics analysis of the exact solution is 
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presented. A sequel to this paper presents a comparison of results of the Burgers’ coarse grid 
solution, solved with the new filter to data generated from this exact solution. 
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